:https://kexue.fm/archives/5253
分布变换
通常我们会拿VAE跟GAN比较,的确,它们两个的目标基本是一致的——希望构建一个从隐变量Z生成目标数据X的模型,但是实现上有所不同。更准确地讲,它们是假设了Z服从某些常见的分布(比如正态分布或均匀分布),然后希望训练一个模型X=g(Z),这个模型能够将原来的概率分布映射到训练集的概率分布,也就是说,它们的目的都是进行分布之间的变换。
生成模型的难题就是判断生成分布与真实分布的相似度,因为我们只知道两者的采样结果,不知道它们的分布表达式
那现在假设Z服从标准的正态分布,那么我就可以从中采样得到若干个Z1,Z2,…,Zn,然后对它做变换得到X’1=g(Z1),X’2=g(Z2)…,X’n=g(Zn)g有读者说不是有KL散度吗?当然不行,因为KL散度是根据两个概率分布的表达式来算它们的相似度的,然而目前我们并不知道它们的概率分布的表达式,我们只有一批从构造的分布采样而来的数据{ X’1,X’2…,X’n},还有一批从真实的分布采样而来的数据{ X1,X2,…,Xn}(也就是我们希望生成的训练集)。我们只有样本本身,没有分布表达式,当然也就没有方法算KL散度。
虽然遇到困难,但还是要想办法解决的。GAN的思路很直接粗犷:既然没有合适的度量,那我干脆把这个度量也用神经网络训练出来吧。就这样,WGAN就诞生了,详细过程请参考。而VAE则使用了一个精致迂回的技巧。
VAE慢谈
这一部分我们先回顾一般教程是怎么介绍VAE的,然后再探究有什么问题,接着就自然地发现了VAE真正的面目。
经典回顾
首先我们有一批数据样本{ X1,X2,…,Xn},其整体用X来描述,我们本想根据{ X1,X2,…,Xn}得到X的分布p(X),如果能得到的话,那我直接根据p(X)来采样,就可以得到所有可能的X了(包括{ X1,
X2,…,Xn}以外的),这是一个终极理想的生成模型了。当然,这个理想很难实现,于是我们将分布改一改
这里我们就不区分求和还是求积分了,意思对了就行。此时p(X|Z)就描述了一个由Z来生成X的模型,而我们假设Z服从标准正态分布,也就是p(Z)=N(0,I),如果这个理想能实现,那么我们就可以先从标准正态分布中采样一个Z,然后根据Z来算一个X,也是一个很棒的生成模型。接下来就是结合自编码器来实现重构,保证有效信息没有丢失,再加上一系列的推导,最后把模型实现。框架的示意图如下:
vae的传统理解
看出了什么问题了吗?如果像这个图的话,我们其实完全不清楚:究竟经过重新采样出来的Zk,是不是还对应着原来的Xk,所以我们如果直接最小化D(X’k,Xk)2(这里D代表某种距离函数)是很不科学的,而事实上你看代码也会发现根本不是这样实现的。也就是说,很多教程说了一大通头头是道的话,然后写代码时却不是按照所写的文字来写,可是他们也不觉得这样会有矛盾~
VAE初现
其实,在整个VAE模型中,我们并没有去使用p(Z)(先验分布)是正态分布的假设,我们用的是假设p(Z|X)(后验分布)是正态分布!!
具体来说,给定一个真实样本Xk,我们假设存在一个专属于Xk的分布p(Z|Xk)(学名叫后验分布),并进一步假设这个分布是(独立的、多元的)正态分布。为什么要强调“专属”呢?因为我们后面要训练一个生成器X=g(Z),希望能够把从分布p(Z|Xk)采样出来的一个Zk还原为Xk。如果假设p(Z)是正态分布,然后从p(Z)中采样一个Z,那么我们怎么知道这个Z对应于哪个真实的X呢?现在p(Z|Xk)专属于Xk,我们有理由说从这个分布采样出来的Z应该要还原到Xk中去。
这时候每一个Xk都配上了一个专属的正态分布,才方便后面的生成器做还原。但这样有多少个X就有多少个正态分布了。我们知道正态分布有两组参数:均值μ和方差σ2(多元的话,它们都是向量),那我怎么找出专属于Xk的正态分布p(Z|Xk)的均值和方差呢?好像并没有什么直接的思路。那好吧,那我就用神经网络来拟合出来吧!这就是神经网络时代的哲学:难算的我们都用神经网络来拟合,在WGAN那里我们已经体验过一次了,现在再次体验到了。
于是我们构建两个神经网络μk=f1(Xk),logσ2=f2(Xk)来算它们了。我们选择拟合logσ2l而不是直接拟合σ2,是因为σ2总是非负的,需要加激活函数处理,而拟合logσ2不需要加激活函数,因为它可正可负。到这里,我能知道专属于Xk的均值和方差了,也就知道它的正态分布长什么样了,然后从这个专属分布中采样一个Zk出来,然后经过一个生成器得到X’k=g(Zk),现在我们可以放心地最小化D(X’k,Xk)2,因为Zk是从专属Xk的分布中采样出来的,这个生成器应该要把开始的Xk还原回来。于是可以画出VAE的示意图:
事实上,vae是为每个样本构造专属的正态分布,然后采样来重构
分布标准化
让我们来思考一下,根据上图的训练过程,最终会得到什么结果。
首先,我们希望重构X,也就是最小化D(X’k,Xk)2,但是这个重构过程受到噪声的影响,因为Zk是通过重新采样过的,不是直接由encoder算出来的。显然噪声会增加重构的难度,不过好在这个噪声强度(也就是方差)通过一个神经网络算出来的,所以最终模型为了重构得更好,肯定会想尽办法让方差为0。而方差为0的话,也就没有随机性了,所以不管怎么采样其实都只是得到确定的结果(也就是均值),只拟合一个当然比拟合多个要容易,而均值是通过另外一个神经网络算出来的。
说白了,模型会慢慢退化成普通的AutoEncoder,噪声不再起作用。
别急别急,其实VAE还让所有的p(Z|X)都向标准正态分布看齐,这样就防止了噪声为零,同时保证了模型具有生成能力。怎么理解“保证了生成能力”呢?如果所有的p(Z|X)都很接近标准正态分布N(0,I),那么根据定义
这样我们就能达到我们的先验假设:p(Z)是标准正态分布。然后我们就可以放心地从N(0,I)中采样来生成图像了。
为了使模型具有生成能力,vae要求每个p(Z|X)都向正态分布看齐
那怎么让所有的p(Z|X)都向N(0,I)看齐呢?如果没有外部知识的话,其实最直接的方法应该是在重构误差的基础上中加入额外的loss:
因为它们分别代表了均值μk和方差的对数logσ2,达到N(0,I)就是希望二者尽量接近于0了。不过,这又会面临着这两个损失的比例要怎么选取的问题,选取得不好,生成的图像会比较模糊。所以,原论文直接算了一般(各分量独立的)正态分布与标准正态分布的KL散度 KL(N(μ,σ2)∥N(0,I))作为这个额外的loss,计算结果为
这里的d是隐变量Z的维度,而μ(i)和σ2(i)分别代表一般正态分布的均值向量和方差向量的第i个分量。直接用这个式子做补充loss,就不用考虑均值损失和方差损失的相对比例问题了。显然,这个loss也可以分两部分理解:
重参数技巧
重参数技巧
最后是实现模型的一个技巧,英文名是reparameterization trick,我这里叫它做重参数吧。其实很简单,就是我们要从p(Z|Xk)中采样一个Zk出来,尽管我们知道了p(Z|Xk)是正态分布,但是均值方差都是靠模型算出来的,我们要靠这个过程反过来优化均值方差的模型,但是“采样”这个操作是不可导的,而采样的结果是可导的。我们利用
这说明(z−μ)/σ=ε是服从均值为0、方差为1的标准正态分布的,要同时把dz考虑进去,是因为乘上dz才算是概率,去掉dz是概率密度而不是概率。这时候我们得到:
从N(μ,σ2)中采样一个Z,相当于从N(0,I)中采样一个ε,然后让Z=μ+ε×σ
于是,我们将从N(μ,σ2)采样变成了从N(0,I)中采样,然后通过参数变换得到从N(μ,σ2)中采样的结果。这样一来,“采样”这个操作就不用参与梯度下降了,改为采样的结果参与,使得整个模型可训练了。
具体怎么实现,大家把上述文字对照着代码看一下,一下子就明白了~
后续分析
即便把上面的所有内容都搞清楚了,面对VAE,我们可能还存有很多疑问。
本质是什么
VAE的本质是什么?VAE虽然也称是AE(AutoEncoder)的一种,但它的做法(或者说它对网络的诠释)是别具一格的。在VAE中,它的Encoder有两个,一个用来计算均值,一个用来计算方差,这已经让人意外了:Encoder不是用来Encode的,是用来算均值和方差的,这真是大新闻了,还有均值和方差不都是统计量吗,怎么是用神经网络来算的?
事实上,我觉得VAE从让普通人望而生畏的变分和贝叶斯理论出发,最后落地到一个具体的模型中,虽然走了比较长的一段路,但最终的模型其实是很接地气的:它本质上就是在我们常规的自编码器的基础上,对encoder的结果(在VAE中对应着计算均值的网络)加上了“高斯噪声”,使得结果decoder能够对噪声有鲁棒性;而那个额外的KL loss(目的是让均值为0,方差为1),事实上就是相当于对encoder的一个正则项,希望encoder出来的东西均有零均值。
那另外一个encoder(对应着计算方差的网络)的作用呢?它是用来动态调节噪声的强度的。直觉上来想,当decoder还没有训练好时(重构误差远大于KL loss),就会适当降低噪声(KL loss增加),使得拟合起来容易一些(重构误差开始下降);反之,如果decoder训练得还不错时(重构误差小于KL loss),这时候噪声就会增加(KL loss减少),使得拟合更加困难了(重构误差又开始增加),这时候decoder就要想办法提高它的生成能力了。
vae的本质结构
说白了,重构的过程是希望没噪声的,而KL loss则希望有高斯噪声的,两者是对立的。所以,VAE跟GAN一样,内部其实是包含了一个对抗的过程,只不过它们两者是混合起来,共同进化的。从这个角度看,VAE的思想似乎还高明一些,因为在GAN中,造假者在进化时,鉴别者是安然不动的,反之亦然。当然,这只是一个侧面,不能说明VAE就比GAN好。GAN真正高明的地方是:它连度量都直接训练出来了,而且这个度量往往比我们人工想的要好(然而GAN本身也有各种问题,这就不展开了)。